Фазовая диаграмма воды. Диаграмма состояния воды. Неравновесные состояния воды

Эта диаграмма показана на рис. 6.5. Области фазовой диаграммы, ограниченные кривыми, соответствуют тем условиям (температурам и давлениям), при которых устойчива только одна фаза вещества. Например, при любых значениях температуры и давления, которые соответствуют точкам диаграммы, ограниченным кривыми ВТ и ТС, вода существует в жидком состоянии. При любых температуре и давлении, соответствующих точкам диаграммы, которые расположены ниже кривых АТ и ТС, вода существует в парообразном состоянии.

Кривые фазовой диаграммы соответствуют условиям, при которых какие-либо две фазы находятся в равновесии друг с другом. Например, при температурах и давлениях, соответствующих точкам кривой ТС, вода и ее пар находятся в равновесии. Это и есть кривая давления пара воды (см. рис. 3.13). В точке X на этой кривой жидкая вода и пар находятся в равновесии при температуре 373 К (100 °С) и давлении 1 атм (101,325 кПа); точка X представляет собой точку кипения воды при давлении 1 атм.

Кривая АТ является кривой давления пара льда; такую кривую обычно называют кривой сублимации.

Кривая ВТ представляет собой кривую плавления. Она показывает, как давление влияет на температуру плавления льда: если давление возрастает, температура плавления немного уменьшается. Такая зависимость температуры плавления от давления встречается редко. Обычно возрастание давления благоприятствует образованию твердого вещества, как мы убедимся на примере рассматриваемой далее фазовой диаграммы диоксида углерода. В случае воды повышение давления приводит к разрушению водородных связей, которые в кристалле льда связывают между собой молекулы воды, заставляя их образовывать громоздкую структуру. В результате

Рис. 6.5. Фазовая диаграмма воды.

разрушения водородных связей происходит образование более плотной жидкой фазы (см. разд. 2.2).

В точке У на кривой ВТ лед находится в равновесии с водой при температуре 273 К (0 °С) и давлении 1 атм. Она представляет собой точку замерзания воды при давлении 1 атм.

Кривая ST указывает давление пара воды при температурах ниже ее точки замерзания. Поскольку вода в нормальных условиях не существует в виде жидкости при температурах ниже ее точки замерзания, каждая точка на этой кривой соответствует воде, находящейся в метастабилъном состоянии. Это означает, что при соответствующих температуре и давлении вода находится не в своем наиболее устойчивом (стабильном) состоянии. Явление, которое соответствует существованию воды в метастабилъном состоянии, описываемом точками этой кривой, называется переохлаждением.

На фазовой диаграмме имеются две точки, представляющие особый интерес. Прежде всего отметим, что кривая давления пара воды заканчивается точкой С. Она называется критической точкой воды. При температурах и давлениях выше этой точки пары воды не могут быть превращены в жидкую воду никаким повышением давления (см. также разд. 3.1). Другими словами, выше этой точки паровая и жидкая формы воды перестают быть различимыми. Критическая температура воды равна 647 К, а критическое давление составляет 220 атм.

Точка Т фазовой диаграммы называется тройной точкой. В этой точке лед, жидкая вода и пары воды находятся в равновесии друг с другом. Этой точке соответствуют температура 273,16 К и давление атм. Лишь при указанных значениях температуры и давления все три фазы воды могут существовать вместе, находясь в равновесии друг с другом.

Иней может образовываться двумя способами: из росы либо непосредственно из влажного воздуха.

Образование инея из росы. Роса - это вода, образующаяся при охлаждении влажного воздуха, когда его температура понижается, пересекая (при атмосферном давлении) кривую ТС на рис. 6.5. Иней образуется в результате замерзания росы, когда температура понижается настолько, что пересекает кривую ВТ.

Образование инея непосредственно из влажного воздуха. Иней образуется из росы только в том случае, если давление пара воды превышает давление тройной точки Т, т.е. больше атм. Если же давление паров воды меньше этого значения, иней образуется непосредственно из влажного воздуха, без предварительного образования росы. В таком случае он появляется, когда понижающаяся температура пересекает кривую на рис. 6.5. В этих условиях образуется сухой иней.


Глава 2. Правило фаз для однокомпонентной системы

Для однокомпонентной системы (К=1) правило фаз записывается в виде

С = 3-Ф . (9)

Если Ф = 1, то С =2 , говорят, что система бивариантна ;
Ф = 2, то С =1 , система моновариантна ;
Ф = 3, то С =0 , система нонвариантна .

Соотношение между давлением (р), температурой (Т) и объемом (V) фазы можно представить трехмерной фазовой диаграммой . Каждая точка (ее называют фигуративной точкой ) на такой диаграмме изображает некоторое равновесное состояние. Обычно удобнее работать с сечениями этой диаграммы плоскостью р - Т (при V=const) или плоскостью р -V (при T=const). Разберем более детально случай сечения плоскостью р - Т (при V=const).

2.1. Фазовая диаграмма воды

Фазовая диаграмма воды в координатах р - Т представлена на рис.1. Она составлена из 3 фазовых полей - областей различных (р,Т)-значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рис.1 буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.

Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от давления). Другими словами, эта линия отвечает двухфазному равновесию (жидкая вода) D (пар), и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 - 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т.к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные (С = 3 - 1 = 2): температура и давление.

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374 o С и 218 атм). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает четкая межфазная граница жидкость/пар), поэтому Ф=1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию (лед) D (пар) (С=1). Выше линии АС лежит область льда, ниже - область пара.

Линия АD -кривая плавления , выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию (лед) D (жидкая вода). Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды

Рис.1. Фазовая диаграмма воды

аномально: жидкая вода занимает меньший объем, чем лед . На основании принципа Ле Шателье можно предсказать, что повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т.е. точка замерзания будет понижаться.

Исследования, проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что существует семь различных кристаллических модификаций льда , каждая из которых, за исключением первой, плотнее воды . Таким образом, верхний предел линии AD - точка D, где в равновесии находятся лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22 0 С и 2450 атм (см.задачу 11).

Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,0100 o С и 4,58 мм рт.ст. Число степеней свободы С=3-3=0 и такое равновесие называют нонвариантным .

В присутствии воздуха три фазы находятся в равновесии при 1 атм и при 0 o С. Понижение тройной точки на воздухе вызвано следующим причинами:
1. растворимостью воздуха в жидкой воде при 1 атм, что приводит к снижению тройной точки на 0,0024 o С;
2. увеличением давления от 4,58 мм рт.ст. до 1 атм, которое снижает тройную точку еще на 0.0075 o С.

2.2. Фазовая диаграмма серы

Кристаллическая сера существует в виде двух модификаций – ромбической (S р) и моноклинной (S м). Поэтому возможно существование четырех фаз: ромбической, моноклинной, жидкой и газообразной (рис.2). Сплошные линии ограничивают четыре области: пара, жидкости и двух кристаллических модификаций. Сами линии отвечают моновариантным равновесиям двух соответствующих фаз. Заметьте, что линия равновесия моноклинная сера - расплав отклонена от вертикали вправо (сравните с фазовой диаграммой воды). Это означает, что при кристаллизации серы из расплава происходит уменьшение объема. В точках А, В и С в равновесии сосуществуют 3 фазы (точка А – ромбическая, моноклинная и пар, точка В – ромбическая, моноклинная и жидкость, точка С – моноклинная, жидкость и пар). Легко заметить, что есть еще одна точка О,

Рис.2. Фазовая диаграмма серы

в которой существует равновесие трех фаз – перегретой ромбической серы, переохлажденной жидкой серы и пара, пересыщенного относительно пара, равновесного с моноклинной серой. Эти три фазы образуют метастабильную систему , т.е. систему, находящуюся в состоянии относительной устойчивости . Кинетика превращения метастабильных фаз в термодинамически стабильную модификацию крайне медленна, однако при длительной выдержке или внесении кристаллов-затравок моноклинной серы все три фазы все же переходят в моноклинную серу, которая является термодинамически устойчивой в условиях, отвечающих точке О. Равновесия, которым соответствуют кривые ОА, ОВ и ОС (кривые – возгонки, плавления и испарения, соответственно) являются метастабильными.

В случае диаграммы серы мы сталкиваемся с самопроизвольным взаимным превращением двух кристаллических модификаций, которые могут протекать в прямом и обратном направлении в зависимости от условий. Такого типа превращения называются энантиотропными (обратимыми).

Взаимные превращения кристаллических фаз, которые могут протекать лишь в одном направлении , называются монотропными (необратимыми). Примером монотропного превращения является переход белого фосфора в фиолетовый.

2.3. Уравнение Клаузиуса - Клапейрона

Движение вдоль линий двухфазного равновесия на фазовой диаграмме (С=1) означает согласованное изменение давления и температуры, т.е. р=f(Т). Общий вид такой функции для однокомпонентных систем был установлен Клапейроном.

Допустим, мы имеем моновариантное равновесие (вода) D (лед) (линия AD на рис.1). Условие равновесия будет выглядеть так: для любой точки с координатами (р,Т), принадлежащей линии AD, воды (р,Т) = льда (р,Т). Для однокомпонентной системы =G/n, где G - свободная энергия Гиббса, а n - число молей (=const). Нужно выразить G=f(p,T). Формула G= H-T S для этой цели не годится, т.к. выведена для р,Т=const. В общем виде, Gє H-TS=U+pV-TS. Найдем дифференциал dG, используя правила для дифференциала суммы и произведения: dG=dU+p . dV+V . dp-T . dS-S . dT. Согласно 1-му закону термодинамики dU=dQ - dA, причем dQ=T . dS,a dA= p . dV. Тогда dG=V . dp - S . dT. Очевидно, что в равновесии dG воды /n=dG льда /n (n=n воды =n льда =сonst). Тогда v воды. dp-s воды. dT=v льда. dp-s льда. dT, где v воды, v льда - мольные (т.е. деленные на количество молей) объемы воды и льда, s воды, s льда - мольные энтропии воды и льда. Преобразуем полученное выражение в (v воды - v льда) . dp = (s воды - s льда) . dT, (10)

или: dp/dT= s фп / v фп, (11)

где s фп, v фп - изменения мольных энтропии и объема при фазовом переходе ((лед) (вода) в данном случае).

Поскольку s фп = H фп /Т фп, то чаще применяют следующий вид уравнения:

где H фп - изменения энтальпии при фазовом переходе,
v фп - изменение мольного объема при переходе,
Т фп - температура при которой происходит переход.

Уравнение Клапейрона позволяет, в частности, ответить на следующий вопрос: какова зависимость температуры фазового перехода от давления? Давление может быть внешним или создаваться за счет испарения вещества.

Пример 6. Известно, что лед имеет больший мольный объем, чем жидкая вода. Тогда при замерзании воды v фп = v льда - v воды > 0, в то же время H фп = H крист < 0, поскольку кристаллизация всегда сопровождается выделением теплоты. Следовательно, H фп /(T . v фп)< 0 и, согласно уравнению Клапейрона, производная dp/dT< 0. Это означает, что линия моновариантного равновесия (лед) D (вода) на фазовой диаграмме воды должна образовывать тупой угол с осью температур.

Пример 7. Отрицательное значение dp/dT для фазового перехода (лед) " (вода) означает, что под давлением лед может плавится при температуре ниже 0 0 С. Основываясь на этой закономерности, английские физики Тиндаль и Рейнольдс около 100 лет назад предположили, что известная легкость скольжения по льду на коньках связана с плавлением льда под острием конька ; образующаяся при этом жидкая вода действует как смазка. Проверим, так ли это, используя уравнение Клапейрона.

Плотность воды - в = 1 г/см 3 , плотность льда - л = 1.091 г/см 3 , молекулярная масса воды - М = 18 г/моль. Тогда:

V фп = М/ в -М/ л = 18/1.091-18/1= -1.501 см 3 /моль = -1.501 . 10 -6 м 3 /моль,

энтальпия плавления льда - Н фп = 6.009 кДж/моль,

Т фп = 0 0 С=273 К.

По уравнению Клапейрона:

dp/dT= - (6.009 . 10 3 Дж/моль)/(273К. 1.501 . 10 -6 м 3 /моль)=

146.6 . 10 5 Па/К= -146 атм/К.

Значит, для плавления льда при температуре, скажем, -10 0 С необходимо приложить давление 1460 атм. Но такой нагрузки лед не выдержит! Следовательно, изложенная выше идея не соответствует действительности . Реальная же причина плавления льда под коньком - теплота, выделяемая при трении.

Клаузиус упростил уравнение Клапейрона в случае испарения и возгонки , предположив, что:

2.4. Энтропия испарения

Мольная энтропия испарения S исп = H исп /Т кип равна разности S пара - S жидк. Поскольку S пара >> S жидк, то можно полагать S исп S пара. Следующее допущение состоит в том, что пар считают идеальным газом. Отсюда вытекает приблизительное постоянство мольной энтропии испарения жидкости при температуре кипения, называемое правилом Трутона.

Правило Трутона. Мольная энтропия испарения любой
жидкости составляет величину порядка 88 Дж/(моль. К).

Если при испарении разных жидкостей не происходит ассоциации или диссоциации молекул, то энтропия испарения будет приблизительно одинакова. Для соединений, образующих водородные связи (вода, спирты), энтропия испарения больше 88 Дж/(моль. К).

Правило Трутона позволяет определить энтальпию испарения жидкости по известной температуре кипения, а затем по уравнению Клаузиуса-Клапейрона определить положение линии моновариантного равновесия жидкость-пар на фазовой диаграмме.

Состояние воды изучено в широком диапазоне температур и давлений. При высоких давлениях установлено существование не менее десяти кристаллических модификаций льда. Наиболее изученным является лед I - единственная модификация льда, обнаруженная в природе.

Наличие различных модификаций вещества - полиморфизма приводит к усложнению диаграмм состояния.

Фазовая диаграмма воды в координатах Р – Т представлена на рис.15. Она состоит из 3 фазовых полей - областей различных Р,Т - значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рисунке буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.

Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от внешнего давления). Другими словами, эта линия отвечает двухфазному равновесию.

Жидкая вода ↔ пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 – 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т. к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные: температура и давление (С = 3 – 1 = 2).

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374,2ºС и 218,5 атм .). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает межфазная граница жидкость/пар), поэтому Ф = 1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию лед ↔ пар (С = 1). Выше линии АС лежит область льда, ниже - область пара.

Линия АD - кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию лед ↔ жидкая вода. Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды аномально: жидкая вода занимает меньший объем, чем лед. Повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т. е. точка замерзания будет понижаться.

Исследования, впервые проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что все существующие кристаллические модификации льда, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD - точка D, где в равновесии сосуществуют лед I (обычный лед), лед III и жидкая вода. Эта точка находится при –22ºС и 2450 атм .

Рис. 15. Фазовая диаграмма воды

На примере воды видно, что фазовая диаграмма не всегда имеет такой простой характер, как показано на рис.15. Вода может существовать в виде нескольких твердых фаз, которые различаются своей кристаллической структурой (смотри рис.16).

Рис. 16. Развернутая фазовая диаграмма воды в широком диапазоне значений давления.

Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,01ºС (T = 273,16K ) и 4,58 мм рт.ст . Число степеней свободы С = 3-3 = 0 и такое равновесие называют инвариантным.

В присутствии воздуха три фазы находятся в равновесии при 1 атм . и 0ºС (T = 273,15K ). Понижение тройной точки на воздухе вызвано следующим причинами:

1. Растворимостью воздуха в жидкой воде при 1 атм , что приводит к снижению тройной точки на 0,0024ºС;

2. Увеличением давления от 4,58 мм рт.ст . до 1 атм , которое снижает тройную точку еще на 0,0075ºС.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет физической химии и её значение
Взаимосвязь химических и физических явлений изучает физическая химия. Этот раздел химии является пограничным между химией и физикой. Пользуясь теоретическими и экспериментальными методами об

Краткий очерк истории развития физической химии
Термин «физическая химия» и определение этой науки впервые были даны М.В.Ломоносовым, который в 1752-1754 гг. читал студентам Академии наук курс физической химии и оставил рукопись этого курса «Вве

Энергия. Закон сохранения и превращения энергии
Неотъемлемым свойством (атрибутом) материи является движение; оно неуничтожимо, как и сама материя. Движение материи проявляется в разных формах, которые могут переходить одна в другую. Мерой движе

Предмет, метод и границы термодинамики
Сосредотачивая своё внимание на теплоте и работе, как формах перехода энергии при самых различных процессах, термодинамика вовлекает в круг своего рассмотрения многочисленные энергетические зависим

Теплота и работа
Изменения форм движения при его переходе от одного тела к другому и соответствующие превращения энергии весьма разнообразны. Формы же самого перехода движения и связанных с ним превращений энергии

Эквивалентность теплоты и работы
Постоянное эквивалентное отношение между теплотой и работой при их взаимных переходах установлено в классических опытах Д.П.Джоуля (1842-1867). Типичный эксперимент Джоуля заключается в следующем (

Внутренняя энергия
Для некругового процесса равенство (I, 1) не соблюдается, так как система не возвращается в исходное состояние. Вместо этого равенства для некругового процесса можно записать (опуская коэффициент

Первый закон термодинамики
Первый закон (первое начало) термодинамики непосредственно связан с законом сохранения энергии. Он позволяет рассчитывать баланс энергии при протекании различных процессов, в том числе и химических

Уравнения состояния
Многие свойства системы, находящейся в равновесии, и составляющих её фаз являются взаимозависимыми. Изменение одного из них вызывает изменение других. Количественные функциональные зависимости межд

Работа различных процессов
Под названием работы объединяются многие энергетические процессы; общим свойством этих процессов является затрата энергии системы на преодоление силы, действующей извне. К таким процессам относится

Теплоёмкость. Вычисление теплоты различных процессов
Опытное определение удельной (с) или мольной (С) теплоёмкости тела заключается в измерении теплоты Q, поглощаемой при нагревании одного грамма или одного моля вещества н

Калорические коэффициенты
Внутренняя энергия системы U, будучи функцией состояния, является функцией независимых переменных (параметров состояния) системы. В простейших системах будем рассматривать внутренню

Применение первого закона термодинамики к идеальному газу
Рассмотрим идеальный газ, т. е. газ, состояние одного моля которого описывается уравнением Менделеева‑Клапейрона:

Адиабатические процессы в газах
Говорят, что термодинамическая система совершает адиабатический процесс, если он обратим и если система термически изолирована, так что во время процесса не происходит теплообмена между системой и

Энтальпия
Уравнение первого закона термодинамики для процессов, где совершается только работа расширения, приобретает вид: δQ = dU + PdV (I, 51) Если процесс идет при постоянном

Химическая переменная. Формулировка первого закона термодинамики для процессов, сопровождающихся химическими и фазовыми превращениями
Уравнения (I, 27), (I, 28) и ранее приведённые формулировки первого закона термодинамики справедливы для любой равновесной закрытой системы вне зависимости от того, происходят в ней химические или

Термохимия. Закон Гесса
При химических превращениях происходит изменение внутренней энергии системы, обусловленное тем, что внутренняя энергия продуктов реакции отличается от внутренней энергии исходных веществ.

Зависимость теплового эффекта от температуры. Уравнение Кирхгофа
По закону Гесса можно вычислить тепловой эффект реакции при той температуре, при которой известны теплоты образования или теплоты сгорания всех реагентов (обычно это 298К). Однако, часто воз

Самопроизвольные и несамопроизвольные процессы
Из первого закона термодинамики и вытекающих из него закономерностей обмена энергией между телами при различных процессах нельзя сделать вывода о том, возможен ли, вообще говоря, данный процесс и в

Второй закон термодинамики
Наиболее часто встречающимися и безусловно самопроизвольными являются процессы передачи теплоты от горячего тела к холодному (теплопроводность) и перехода работы в теплоту (трение). Многовековая жи

Методы расчета изменения энтропии
Уравнения (II, 12) и (II, 13), определяющие энтропию, являются единственными исходными уравнениями для термодинамического расчета изменения энтропии системы. Заменяя элементарную теплоту в уравнени

Постулат Планка
По уравнению (II, 3) невозможно вычислить абсолютное значение энтропии системы. Такую возможность дает новое, недоказуемое положение, не вытекающее из двух законов термодинамики, которое было сформ

Абсолютные значения энтропии
Постулат Планка используется при термодинамическом исследовании химических процессов для вычисления абсолютных значений энтропии химических соединений - величин, которые имеют большое значение при

Стандартная энтропия. Изменение энтропии при протекании химической реакции
Энтропию, как и другие термодинамические функции, принято относить к стандартному состоянию вещества. Напомним, что стандартное состояние характеризуется стандартными усло

Статистическая интерпретация энтропии
В основу понятия энтропии как функции состояния положена макроскопическая концепция. Справедливость второго закона термодинамики связана с реальностью необратимых процессов. В отличие от необратимы

Энергия Гельмгольца
Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окр

Энергия Гиббса
Желая учесть в общей форме другие виды работы, кроме работы расширения, представим элементарную работу как сумму работы расширения и других видов работы: dW = PdV + dW" (III, 15)

Характеристические функции. Фундаментальные (канонические) уравнения состояния
Ранее мы определили следующие термодинамические функции - свойства системы: внутреннюю энергию U, энтальпию H, энтропию S, энергию Гельмгольца F, энергию Гиббса G

Соотношения Максвелла
Рассмотрим теперь вторые смешанные производные характеристических функций. Принимая во внимание уравнения (III, 26), можем записать:

Уравнение Гиббса-Гельмгольца
Уравнение Гиббса-Гельмгольца позволяет определять изменение энергии Гиббса, сопровождающее химические реакции при любой заданной температуре, если известна зависимость теплоты химических реакций от

Энергия Гиббса смеси идеальных газов. Определение химического потенциала
Энергия Гиббса является экстенсивной функцией, что позволяет рассчитать ее значение для смеси идеальных газов. Представим себе резервуар, разделенный перегородками на секции, как показано

Химический потенциал
Чтобы прояснить смысл понятия «химический потенциал», продифференцируем выражение (III,51) как произведение при постоянных Р и Т:

Фазовые переходы. Уравнение Клапейрона-Клаузиуса
В системе, состоящей из нескольких фаз чистого вещества, находящихся в равновесии, возможны переходы вещества из одной фазы в другую. Такие переходы называются фазовыми переходами.

Фазовые переходы первого рода. Плавление. Испарение
Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением первых производных по энергии Гиббса (энтропии и объема) при пе

Фазовые переходы второго рода
Фазовый переход второго рода - это равновесный переход вещества из одной фазы в другую, при котором скачкообразно изменяются только вторые производные от энергии Гиббса по температуре и давлению.

Зависимость давления насыщенного пара от температуры
Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавл

Общие условия равновесия
Любая закрытая система, находящаяся в равновесии при постоянных давлении и температуре, характеризуется соотношением:

Правило фаз Гиббса
В 1876 г. Гиббс вывел простую формулу, связывающую число фаз (Ф), находящихся в равновесии, число компонентов (К) и число степеней свободы (С) системы. При равновесии должны бы

Применение правила фаз Гиббса к однокомпонентным системам. Диаграммы состояния воды и серы
Для однокомпонентной системы К =1 и правило фаз записывается в виде: С = 3 – Ф Если Ф = 1, то С =2 , говорят, что система бивариантна;

Фазовая диаграмма серы
Кристаллическая сера существует в виде двух модификаций - ромбической (Sр) и моноклинной (Sм). Поэтому возможно существование четырех фаз: ромбической, мо

Закон действующих масс. Константа равновесия для газофазных реакций
Допустим, что между газообразными веществами А1, А2 … Аi, А’1, А’2 … А’i протекает химически обратимая реакция по уравнению:

Уравнение изотермы химической реакции
Предположим, в смеси идеальных газов протекает химическая реакция по уравнению Допустим, что в момент приг

Представление о химическом сродстве
Из того факта, что одни вещества реагируют друг с другом легко и быстро, другие с трудом, третьи - совсем не реагируют, возникает предположение о наличии или отсутствии особого химического сродства

Использование закона действующих масс для расчета состава равновесных смесей
Для определения состава системы при установившемся равновесии, а следовательно, и выхода продукта (продуктов) реакции необходимо знать константу равновесия и состав исходной смеси. Состав

Гетерогенные химические равновесия
Закон действующих масс был выведен с использованием закона состояния идеальных газов и применим в первую очередь к газовым смесям. Однако его без существенных изменений можно применить и к значител

Влияние температуры на химическое равновесие. Уравнение изобары химической реакции
Для определения зависимости K0от температуры в дифференциальной форме воспользуемся уравнением Гиббса‑Гельмгольца (III, 41)

Принцип Ле Шателье-Брауна
Выведенная из состояния равновесия система вновь возвращается к состоянию равновесия. Ле Шателье и Браун высказали простой принцип, которым можно воспользоваться для предсказания того, в каком напр

Тепловая теорема Нернста
Прямой и простой расчет изменения энергии Гиббса, а, следовательно, и констант равновесия химических реакций не вызывает затруднений, если известны теплота химической реакции и абсолютные значения

Химическое равновесие в неидеальных системах
Закон действующих масс (V, 5) применим, как уже говорилось, лишь к идеальным газам (или идеальным растворам). Для таких систем произведение равновесных относительных парциальных давлений реагирующи

Зависимость энтальпии веществ и тепловых эффектов химических реакций от давления
При рассмотрении зависимости энтальпии от давления воспользуемся хорошо нам известным выражением ее полного дифференциала (III, 27): dH = VdP + TdS Разделим е

5. Фазовые превращения и диаграмма состояния воды

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления, они называются диаграммами состояния в координатах Р---Т

На рисунке 5 приведена в схематической форме диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.

В жидком состоянии - вода

Твёрдом - лёд

Газообразном - пар

Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.

лед = пар (кривая ОА)

лед = жидкость (кривая ОВ)

жидкость = пар (кривая ОС)

О - точка замерзания воды

Для воды критическая температура равна 374 градусов по цельсию. При нормальном давлении жидкая и парообразная фазы воды находятся между собой в равновесии при 100 градусов по цельсию, т.к. при этом давление пара над жидкостью сравнивается с внешним давлением и вода закипает. Пересечение трех кривых происходит в точке О - тройной точке, в которой все три фазы находятся между собой в равновесии.

Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА, отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится, и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представ-ляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом -- сосуществуют. Кривая ОА называется кривой равновесия жидкость--пар или кривой кипения. В таблице 5 приведены значения давления насыщенного водяного пара при нескольких температурах.

Таблица 5

Температура

Давление насыщенного пара

Температура

Давление насыщенного пара

мм рт. ст.

мм рт. ст.

Молекулярная физика воды в трех ее агрегатных состояниях

Рис.5.2 Диаграмма агрегатных состояний воды в области тройной точки А. I -- лед. II -- вода. III -- водяной пар.

Вода встречается в природных условиях в трех состояниях: твердом -- в виде льда и снега, жидком -- в виде собственно воды, газообразном -- в виде водяного пара. Эти состояния воды называют агрегатными состояниями, или же соответственно твердой, жидкой и парообразной фазами. Переход воды из одной фазы в другую обусловлен изменением ее температуры и давления. На рис. приведена диаграмма агрегатных состояний воды в зависимости от температуры t и давления P. Из рис.5.2 видно, что в области I вода находится только в твердом виде, в области II -- только в жидком, в области III -- только в виде водяного пара. Вдоль кривой AC она находится в состоянии равновесия между твердой и жидкой фазами (плавление льда и кристаллизация воды); вдоль кривой AB -- в состоянии равновесия между жидкой и газообразной фазами (испарение воды и конденсация пара); вдоль кривой AD -- в равновесии между твердой и газообразной фазами (сублимация водяного пара и возгонка льда).

Равновесие фаз по рис.5.2 вдоль кривых AB, АС и AD надо понимать как динамическое равновесие, т. е. вдоль этих кривых число вновь образующихся молекул одной фазы строго равно числу вновь образующихся молекул другой фазы.

Если, например, постепенно охлаждать воду при любом давлении, то в пределе окажемся на кривой AC, где будет наблюдаться вода при соответствующих температуре и давлении. Если постепенно нагревать лед при различном давлении, то окажемся на той же кривой равновесия АС, но со стороны льда. Аналогично будем иметь воду и водяной пар, в зависимости от того, с какой стороны будем подходить к кривой AB.

Все три кривые агрегатного состояния -- АС (кривая зависимости температуры плавления льда от давления), АВ (кривая зависимости температуры кипения воды от давления), AD (кривая зависимости давления пара твердой фазы от температуры) -- пересекаются в одной точке A, носящей название тройной точки. По современным исследованиям, значения давления насыщающих паров и температуры в этой точке соответственно равны: P = 610,6 Па (или 6,1 гПа = 4,58 мм рт. ст.), t = 0,01°C (или T = 273,16 К). Кроме тройной точки, кривая АВ проходит еще через две характерные точки -- точку, соответствующую кипению воды при нормальном давлении воздуха с координатами P = 1,013·10 5 Па и t = 100°C, и точку с координатами P = 2,211·10 7 Па и t кр = 374,2°C, соответствующими критической температуре -- температуре, только ниже которой водяной пар можно перевести в жидкое состояние путем сжатия.

Кривые АС, АВ, AD относящиеся к процессам перехода вещества из одной фазы в другую, описываются уравнением Клапейрона--Клаузиуса:

где T -- абсолютная температура, отвечающая для каждой кривой соответственно температуре испарения, плавления, сублимации и т. д.; L -- удельная теплота соответственно испарения, плавления, сублимации; V 2 - V 1 -- разность удельных объемов соответственно при переходе от воды ко льду, от водяного пара к воде, от водяного пара ко льду. Подробное решение этого уравнения относительно давления насыщенного водяного пара e 0 над поверхностью воды -- кривая AB и льда -- кривая AD, можно найти в курсе общей метеорологии.

Водно-химический режим и состояние оборудования теплофикационного контура горячего водоснабжения пятой очереди Свердловской ТЭЦ

Составляющими прямого сетевого потока являются: подпиточная вода и обратка (М- 6; «Градмаш»). В приложении 6 показано изменение расхода прямой сетевой воды на Свердловской ТЭЦ в различные периоды года. Закономерно...

Динамика сетки водородных связей в воде и аморфном льде

Рис.15. Модель «Превращения энергии при колебаниях» Модель (рис.15) иллюстрирует превращения энергии при гармонических колебаниях тела под действием квазиупругой силы...

Неидеальные системы

При определенных условиях две различные фазы одного вещества (например, жидкость и газ) могут сосуществовать друг с другом сколь угодно долгое время. Для этого необходимо выполнение следующих условий на границе двух фаз: , и...

Особенности выбора расходомера

Если колебания распространяются в направлении скорости потока, то они проходят расстояние L за время где а -- скорость звука в данной среде; V -- скорость потока...

Особенности полиморфизма

Атомы металла - исходя из геометрических соображений, могут образовать любую кристаллическую решетку. Однако устойчивым, а, следовательно, реально существующим типом является решетка, обладающая наиболее низким запасом свободной энергии...

К физико-химическим превращениям относятся процессы изменения агрегатного состояния и кристаллической структуры вещества, подвергаемого обработке...

Фазовая плоскость, фазовые траектории. Предельный цикл. Изображение простейших процессов на фазовой плоскости. Изоклины, особые точки. Построение интегральных кривых с помощью изоклин. Построение интегральных кривых дельта-методом

Фазовая траектория -- траектория точки в фазовом пространстве, изображающая, как изменяется со временем t состояние динамической системы. Рассмотрим систему обыкновенных дифференциальных уравнений n-го порядка Y = F(x,Y)...

Физика высокомолекулярных соединений

Реакции этого типа были использованы Штаудингером для доказательства макромолекулярного строения природных, а затем и синтетических полимеров. Поливинилацетат был превращен им в поливиниловый спирт...

Физические основы голографии

Голограммы можно записывать не только на фотографических пластинках, но и в других средах. Существует множество разнообразных материалов, обладающих необходимыми для этого чувствительностью и разрешающей способностью...

Электрический расчет и автоматизация электрокалориферной установки

"right">Таблица 1 Способ нагрева Механизм преобразования энергии Область применения и ЭТО Сопротивлением (прямой и косвенный) Электрическая энергия превращается в тепловую при протекании тока через проводящие материалы Нагрев...

Сначала договоримся, что под термином "вода" будем понимать Н 2 О в любом из возможных ее фазовых состояний.

В природе вода может быть в трех состояниях: твердой фазе (лед, снег), жидкой фазе (вода), газообразной фазе (пар).

Рассмотрим воду без энергетического взаимодействия с окружающей средой, т.е. в равновесном состоянии.

У поверхности льда или жидкости всегда присутствует пар. Соприкасающиеся фазы находятся в термодинамическом равновесии: быстрые молекулы вылетают из жидкой фазы, преодолевая поверхностные силы, а из паровой фазы медленные молекулы переходят в жидкую фазу.

В состоянии равновесия каждой температуре соответствует определенное давление пара – полное (если над жидкостью присутствует только пар) или парциальное (если присутствует смесь пара с воздухом или другими газами). Пар, находящийся в равновесном состоянии с жидкой фазой, из которой он образовался, называется насыщенным паром, а соответствующая ему температура называется температурой насыщения, а давление давлением насыщения .

Теперь рассмотрим неравновесные состояния воды:

а) Пусть понижается давление пара над жидкостью ниже давления насыщения. В этом случае нарушается равновесие, происходит некомпенсированный переход вещества из жидкой фазы в газообразную через поверхность раздела фаз за счет наиболее быстрых молекул.

Процесс некомпенсированного перехода вещества из жидкой фазы в газообразную называется испарением.

Процесс некомпенсированного перехода вещества из твердой фазы в газовую называется сублимациейили возгонкой.

Интенсивность испарения или сублимации возрастает при интенсивном отводе образующегося пара. При этом понижается температура жидкой фазы за счет вылета из нее молекул с наибольшей энергией. Этого можно добиться и без понижения давления, просто обдувом потока воздуха.

б) Пусть идет подвод теплоты к жидкости, находящейся в открытом сосуде. При этом температура, а соответственно и давление насыщенного пара над жидкостью растет и может достигнуть полного внешнего давления (Р=Р н).В случае, когда Р=Р н, у поверхности нагрева температура жидкости поднимается выше температуры насыщенного пара при господствующем здесь давлении, т.е. создаются условия образования пара в толще жидкости.

Процесс перехода вещества из жидкой фазы в паровую непосредственно внутри жидкости называется кипением.

Процесс зарождения пузырьков пара в толще жидкости сложен. Для кипения воды необходимо наличие центров парообразования на поверхности подвода теплоты – углубления, выступы, неровности и т.п. У поверхности нагрева, при кипении, разность температур воды и насыщенного пара при господствующем здесь давлении зависит от интенсивности подвода теплоты и может достигать десятков градусов.

Действие сил поверхностного натяжения жидкости обусловливает перегрев жидкости на поверхности раздела фаз при ее кипении на 0,3-1,5 о С по отношению к температуре насыщенного пара над ней.

Любой процесс перехода вещества из жидкой фазы в паровую называется парообразованием.

Процесс, противоположный парообразованию, т.е. некомпенсированный переход вещества из паровой фазы в жидкую, называется конденсацией.

При постоянном давлении пара конденсация происходит (как и кипение) при постоянной температуре и является результатом отвода теплоты от системы.

Процесс, противоположный сублимации, т.е. переход вещества из паровой фазы непосредственно в твердую, называется десублимацией.

Напомним, что введенные ранее понятия насыщенного пара и температуры насыщения, перенесенные на процесс кипения, объясняют равенство температур пара и жидкости при кипении. В этом случае и давление, и температура жидкой и паровой фаз одинаковы.

Жидкая фаза воды при температуре кипения называется насыщенной жидкостью .

Пар при температуре кипения (насыщения) называется сухим насыщенным паром .

Двухфазная смесь "жидкость+пар" в состоянии насыщения называется влажным насыщенным паром.

В термодинамике этот термин распространяется на двухфазные системы, в которых насыщенный пар может находиться над уровнем жидкости или представлять смесь пара с взвешенными в нем капельками жидкости. Для характеристики влажного насыщенного пара используется понятие степени сухости х , представляющее собой отношение массы сухого насыщенного пара , m с.н.п, к общей массе смеси , m см = m с.н.п + m ж.с.н, его с жидкостью в состоянии насыщения :

Отношение массы жидкой фазы воды в состоянии насыщения к массе смеси называется степенью влажности (1-х):

Подвод теплоты к влажному насыщенному пару при постоянном давлении приводит к переходу жидкой фазы смеси в паровую. При этом температура смеси (насыщения) не может быть повышена до тех пор, пока вся жидкость не будет превращена в пар. Дальнейший подвод теплоты только к паровой фазе в состоянии насыщения приводит к повышению температуры пара.

Пар с температурой выше температуры насыщения при данном давлении называется перегретым паром. Разность температур перегретого пара t и насыщенного пара того же давления t н называется степенью перегрева пара Dt п = t -t н.



С увеличением степени перегрева пара его объем растет, концентрация молекул уменьшается, по своим свойствам он приближается к газам.

6.2. Фазовые диаграммы Р,t-, Р,v- и T,s для Н 2 О

Для анализа различных термодинамических процессов изменения состояния H 2 O широкое применение находят фазовые диаграммы.

Для знакомства с фазовыми диаграммами Р,t- и Р,v представим, что в цилиндре под поршнем, создающим постоянное давление (рис.6.1), находится лед при начальной температуре t 1 . Через стенки цилиндра подводится теплота Q, процесс нагрева и фазовых переходов H 2 О показан в t,Q- диаграмме. Лед нагревается до температуры плавления t пл (процесс 1а), после чего лед плавится при постоянной температуре и превращается в воду (аа"), далее вода нагревается до температуры кипения (насыщения) t н (a"в), затем идет процесс испарения и превращения воды в сухой насыщенный пар (вв"), далее идет процесс перегрева пара (в"2) до температуры t 2 .


Тот же процесс (12) получения перегретого пара из льда при постоянном давлении представлен на рис.6.2 в системе координат Р,t. Так как процессы плавления (aa") и парообразования (вв") протекают при постоянной температуре, на рис. 6.2 они концентрируются в точки а и в. В Р,t- диаграмме эти точки характеризуют термодинамическое равновесие двухфазных смесей. Геометрически место этих точек при различных давлениях и соответствующих им температурах представляет собой линии фазовых переходов.

Линия АВ – линия фазового перехода твердой и жидкой фаз. Это аномальная линия, т.к. для большинства веществ с ростом давления растет и температура плавления, для воды наоборот.


Линия АК – линия фазового перехода жидкой и паровой фаз, с повышением давления растет и температура кипения (насыщения) воды и пара.

С понижением давления разность температур плавления и насыщения уменьшается, и в точке А указанные кривые сходятся. Эта точка А называется тройной точкой воды; ее координаты определяют физические условия (Р о иt о), при которых все три фазы вещества находятся в термодинамическом равновесии и могут существовать одновременно. Параметры тройной точки воды : t о = 0,01 о С или 273,16 К и Р о =611,2 Па.

Кривая АС, расположенная ниже тройной точки, – линия фазового перехода и равновесия твердой и паровой фаз, т.е. линия сублимации и десублимации. Так, при давлении, соответствующем процессу de, при нагреве твердой фазы (de) в точке с происходит переход твердой фазы в пар – сублимация, при охлаждении (процесс еd) в точке c происходит переход пара в твердую фазу – десублимация. В обоих случаях переход минует жидкую фазу.

Кривыми фазовых переходов все поле Р,t- диаграммы делится на три зоны: левее линий ВАС – зона твердого состояния (лед), между кривыми ВА и КА – зона жидкости, правее КАС – зона перегретого пара. При этом линия АК вверху заканчивается точкой К, определяемой критическими параметрами. При давлениях выше критического видимого фазового перехода жидкости в пар нет.

Вода относится к веществам, имеющим несколько модификаций кристаллических фаз. В настоящее время известно шесть модификаций водяного льда. При давлениях, достигаемых в обычных технических устройствах, получается только одна модификация льда. Все остальные модификации могут быть получены при высоких давлениях. У таких веществ Р,t- диаграмма имеет не одну, а несколько тройных точек, т.к. равновесное состояние более чем трех фаз чистого вещества невозможно. Основной тройной точкой в такой диаграмме является та, в которой имеет место равновесие жидкой, газообразной и одной из твердых фаз (точка А, рис.6.2).


Для веществ с нормальной закономерностью изменения объема (к ним относятся большинство веществ, встречающихся в природе, но вода к ним не относится ) при постоянном давлении с увеличением температуры объем непрерывно увеличивается. У таких веществ при Р=const объем твердой фазы меньше объема жидкости, а объем жидкости меньше объема пара. В этом случае изменение объема при фазовом переходе можно представить рис. 6.3.

В точке 1 – твердая фаза с объемом v 1 , в точке а – твердая фаза при температуре плавления с объемом v т п, в точке а" – жидкая фаза при температуре плавления с объемом v ж п, в точке в – жидкая фаза при температуре насыщения (кипения) с объемом v", в точке в" – пар с температурой насыщения с объемом v",в точке 2 – перегретый пар с объемом v 2 . Соотношение объемов v 2 >v">v">v ж п >v т п >v 1 , т.е. соблюдается нормальное закономерное уменьшение объема от v 2 – пара до v 1 – твердая фаза.


В соответствии с этой закономерностью можно построить фазовую диаграмму Р,v для нормального вещества (рис.6.4). Это осуществляется проведением опытов, аналогичных процессу 12 (рис.6.3) при различных постоянных давлениях, в результате чего получаются линии фазовых переходов для нормального вещества в Р,v- диаграмме (рис.6.4): DС – твердая фаза при температуре плавления; АЕ – жидкость при температуре плавления; АК – жидкость при температуре насыщения (кипения, x=0); КL – сухой насыщенный пар (x=1), ВС – твердая фаза при температуре сублимации.

Левее линии СВD – область твердого состояния; между линиями ВД и АЕ – твердая фаза + жидкость ; между линиями АЕ и АК – область жидкости; между линиями АК и КN – жидкость + пар ; между линиями СВ, ВN и NL – твердая фаза + пар ; правее линии КL – область паровой фазы. Горизонталь ВАN соответствует тройной точке нормального вещества в Р,t- диаграмме.


Аналогично диаграмме Р,v выглядит фазовая диаграмма T,s для нормального вещества (рис.6.5). Здесь левее линии DВС – твердая фаза, между линиями ВD и АЕ – двухфазное состояние, твердая фаза+жидкость , между АЕ и АК – жидкая фаза, между ВС и NL – двухфазное состояние, твердая фаза+пар ; правее линии КL – перегретый пар; между АК и КN – двухфазное состояние жидкость+пар в состоянии насыщения (влажный насыщенный пар).

Эти фазовые диаграммы не могут быть распространены целиком на воду. Вода аномальное вещество, при изобарном переходе ее из жидкого состояния в твердое удельный объем воды увеличивается (лед плавает на поверхности воды). Поэтому в Р,v- диаграмме область двухфазного состояния лед+жидкость частично накладывается на зону влажного пара и жидкости.

На рис. 6.6 изображена в укрупненном масштабе часть области фазовой диаграммы Р,v для воды в зоне перехода твердой фазы в жидкую при низких температурах. Здесь горизонталь АВN – изотерма, соответствующая тройной точке воды в Р,t- диаграмме. Вертикаль АЕ – изотерма, соответствующая температуре тройной точки для жидкости, а вертикаль ВD – та же изотерма льда. Между ними – зона двухфазного состояния жидкость+лед .

Кривая АМNL представляет линию жидкости при температуре насыщения (x=0). При повышении давления и температуры начиная со значений тройной точки воды А удельный объем кипящей воды сначала уменьшается, достигая в точке М минимума (около 4 о С и 800 Па), а при дальнейшем повышении давления и температуры удельный объем кипящей воды непрерывно растет. При температуре около 8 о С (точка N) он достигает удельного объема в точке А, и на вертикали NE совпадают две изотермы жидкости (0 и 8 о С). Аналогично этому над линией MN вертикалям будут соответствовать две изотермы жидкой фазы воды. Как указывалось ранее, жидкость плохо сжимаемая фаза, поэтому в области воды изотермы – практически вертикальные прямые линии.

Твердая фаза воды тоже плохо сжимаемая, т.е. изотермы для льда в Р,v- диаграмме – практически прямые вертикальные линии. Кроме этого, объем твердой фазы при 0 о С близок к объему льда в состоянии плавления при температурах ниже 0 о С, а объем жидкой фазы при 0 о С близок к объему жидкости в состоянии насыщения при отрицательных температурах . Зависимость изменения температуры плавления льда от давления слабо выражена по сравнению с изменением температуры насыщения от давления, так при -20 о С лед плавится при давлении 187,3 МПа, а при +20 о С вода кипит при давлении 2,33 кПа. Все вышеизложенное позволяет принять изотермы 0 о С для жидкости – линия АЕ – и льда в состоянии плавления – ВD в Р,v- диаграмме – в качестве пограничных кривых между жидкой фазой, двухфазным состоянием лед+жидкость и твердой фазой для всех давлений выше давления тройной точки воды . При этом в области температур меньше 0 о С твердая фаза будет находиться левее линии ВD, а жидкая фаза – левее линии АЕ, т.к. при уменьшении температуры уменьшается объем как жидкой, так и твердой фазы, а давление плавления льда больше давления тройной точки воды. Однако эти отклонения в пределах давлений, используемых в практике, очень незначительны.

Линия фазового перехода льда непосредственно в пар (линия сублимации) находится при давлениях ниже давления тройной точки – линия ВС. На этой линии с уменьшением давления уменьшается температура льда и его объем. Левее линии ВС находится только твердая фаза, правее – твердая фаза+пар .

В результате фазовая диаграмма Р,v для воды имеет вид, представленный на рис. 6.7, а. Здесь левее линии СВD находится твердая фаза воды, левее линии АК – жидкая фаза воды, между линиями ЕАВD – двухфазное состояние жидкость+лед , между линиями СВNL – двухфазное состояние лед+пар , выше линии КL – перегретый пар. Благодаря аномальным свойствам воды происходит наложение областей различных фазовых состояний воды в Р,v- диаграмме: область двухфазного состояния лед+жидкость ЕАВD накладывается на область жидкости ЕАМD и на область двухфазного состояния жидкость+пар АМВА, кроме этого идет наложение и на область твердой фазы левее линии ВD. Необходимо отметить, что изображение этих областей на рис. 6.7, а выполнено для большей наглядности укрупнено, без соблюдения масштаба. В действительности объемы жидкости и льда намного меньше, чем в точках А и В, в то же время с уменьшением температуры и увеличением давления происходит уменьшение объемов этих фазовых состояний, т.е. левее линии АЕ область жидкости увеличивается по мере возрастания давления, а твердая фаза, находясь левее линии АЕ, не может располагаться левее области жидкой фазы воды при отрицательных температурах.

Для иллюстрации наложения друг на друга различных фаз воды в Р,v- диаграмме на рис. 6.7, а, б изображены две изотермы (пунктирные линии), имеющие температуру больше (t>t о) и меньше (t

Изотерма 1234 имеет температуру меньше 0 о С и проходит в Р,v- диаграмме на линии 12 в области жидкости, на линии 22" – в области двухфазного состояния жидкость+лед , на линии 2"3 – в области льда, на линии 33" – в области двухфазного состояния лед+пар , на линии 3"4 – в области перегретого пара.

Изотерма 567 имеет температуру больше 0 о С и проходит в Р,v- диаграмме на линии 56 в области жидкости, на линии 66" – в области двухфазного состояния жидкость+пар , на линии 6"7 – в области перегретого пара.

Точки пересечения этих изотерм в Р,v- диаграмме свидетельствуют о наложении различных фазовых состояний воды друг на друга. В данных точках эти фазовые состояния имеют одинаковые удельные объемы при одинаковых значениях давлений и различных значениях температур. Так жидкость на изотерме 56 имеет одинаковый удельный объем с жидкостью+лед с одной из точек на изотерме 22", а лед на изотерме 2"3 имеет одинаковый объем с жидкостью+пар с одной из точек на изотерме 66".

При построении фазовой T,s- диаграммы воды начало отсчета энтропии выбирают при параметрах тройной точки воды (t о =0,01 о С и Р о =611,2 Па) для жидкости в состоянии насыщения (х=0).

В дальнейшем ввиду малого отличия температуры тройной точки воды от 0 о С будет использоваться в основном значение нуля градусов Цельсия (под ним подразумевается температура тройной точки воды).

Энтропии жидкой фазы воды при температуре 0 о С для различных давлений (от давления тройной точки воды и более) будут иметь практически одинаковые численные значения, близкие к нулю. Равенство энтропий жидкой фазы воды при 0 о С и различных давлениях объясняется плохой сжимаемостью жидкой фазы воды. Поскольку энтропия, как любой параметр состояния, определяется двумя независимыми параметрами состояния, то равенству температур и удельных объемов жидкости на изотерме 0 о С будет соответствовать равенство энропий в этих точках. Отклонения численных значений энтропии в этих точках от нуля составляют тысячные доли от 1 кДж/(кг·К). Исходя из вышеизложенного изотерма жидкой фазы воды 0 о С в Т,s- диаграмме будет представлять точку А (рис.6.8, а).

Удельная теплота плавления льда – величина положительная, так при 0 о С она равна 335 кДж/кг, поэтому точка В, соответствующая твердой фазе при температуре и давлении тройной точки воды, будет находиться левее точки А, т.е. при отрицательном значении энтропии.

Аномальные свойства воды изменят характер ее фазовой диаграммы T,s по сравнению с T,s- диаграммой для нормального вещества в областях жидкого, твердого и равновесных двухфазных твердое + жидкое и твердое + пар состояний. Во-первых, эти области будут находиться ниже изотермы тройной точки воды, т.к. лед может существовать только при температурах меньше (или равных) 0 о С. Во-вторых, они будут накладываться на область сублимации, где одновременно находится твердая и паровая фазы. Жидкая фаза воды тоже может находиться при температурах меньше 0 о С, т.е. при этих температурах снова будет наложение в Т,s- диаграмме области жидкой фазы на области двухфазных состояний жидкость+лед и пар+лед .

Положительная удельная теплота плавления льда и отрицательные (в градусах Цельсия) значения температур при фазовом переходе от льда к жидкости объясняют месторасположение пограничных линий фазовых переходов: ВС – линия сублимации, АЕ – линия жидкость при температуре плавления, ВD – линия льда при температуре плавления (рис.6.8, а). Характер линий фазовых переходов в этой области объясняется зависимостью изобарной теплоемкости жидкости и льда от давления (линии с меньшей теплоемкостью в Т,s- диаграмме более крутые, чем линии с большей теплоемкостью). Линия сублимации ВС более пологая, чем линия ВД, поскольку изобарная теплоемкость льда при уменьшении давления увеличивается, а при одинаковых температурах давление на линии ВС меньше давления на линии ВД. В свою очередь линия ВД круче линии АЕ, поскольку при одинаковых температурах изобарная теплоемкость льда меньше теплоемкости жидкости.

Фазовая Т,s- диаграмма для воды будет представлена на рис. 6.8, а. Левее линии КАЕ будет находиться область жидкой фазы воды, между линиями DВАЕ – область двухфазного состояния жидкость+лед , между линиями Т о ВD – область твердой фазы, между линиями СВNL – область твердой фазы+пар , выше линии КL – область перегретого пара. Область двухфазного состояния жидкость+лед DВАЕ накладывается на область двухфазного состояния лед+пар СВNL.



В свою очередь, на область двухфазного состояния пар+лед СВNL накладывается область льда СВD. Кроме этого на области льда и двухфазных состояний лед+пар и жидкость+лед накладывается область жидкости левее линии АЕ. На линии ВD находится область льда в состоянии плавления, на линии АЕ – жидкости при температуре плавления, на линии ВС – область сублимации, граница между льдом и паром+лед , на линии АК – область жидкости в состоянии насыщения, на линии КL – сухого насыщенного пара. Для наглядности фазовых превращений воды в Т,s- диаграмме на рис. 2.8, а пунктиром изображены изобары с давлением больше (Р>Р o) и меньше (Р<Р o), чем давление в тройной точке воды. Те же изобары показаны на рис. 6.8, б в Р,t- диаграмме.

В дальнейшем основное внимание будет уделено свойствам жидкой и паровой фаз воды при температурах больше или равных 0 о С. Поэтому в фазовых диаграммах будем изображать только эти области, т.е. практически это правая часть относительно вертикали, проведенной через точку А. В этом случае в Р,v- диаграмме изотерма 0 о C в области жидкости может рассматриваться как левая пограничная кривая жидкой фазы, т.к. она практически вертикальная прямая. В T,s- диаграмме за начало отсчета энтропии берут параметры тройной точки жидкой фазы воды. Поскольку объем жидкой фазы воды при 0 о С практически равен ее объему в тройной точке, а температура тройной точки воды очень близка к 0 о С, то постоянство этих двух параметров даст неизменное значение энтропии жидкой фазы воды при различных давлениях и t=0 o С. Таким образом, все изобары в области жидкой фазы воды будут выходить из точки А в Т,s- диаграмме.

Таким образом, основные линии и процессы для жидкой и паровой фаз воды в Р,v- диаграмме могут быть представлены на рис. 6.9. Здесь докритические изотермы в области жидкости (12) близки к вертикальным прямым с незначительным смещением влево. В области влажного пара (23) изотерма совпадает с изобарой насыщения. В области перегретого пара (34) изотерма представляет кривую выпуклостью вниз. Критическая изотерма имеет точку перегиба в критической точке. Изотермы при t > t кр также могут иметь точку перегиба, которая при больших значениях температуры пропадает.

Линии постоянных энтропий представляют собой кривые выпуклостью вниз. Причем линии s < s кр пересекают только линию x = 0, а линии s > s кр пересекают только линию x = 1.

Построение линий x=const соответствует соотношению отрезков:

Удельный объем жидкости сильно отличается от удельного объема сухого насыщенного пара. Так в тройной точке воды жидкость (точка А) имеет v о "=0,00100022 м 3 /кг, а пар – v о "=206,175 м 3 /кг, в критической точке v кр =0,003147 м 3 /кг. При давлении 1 бар v"=0,0010434 м 3 /кг, а v"=1,6946 м 3 /кг. В результате линия x=0 более крутая, чем линия x=1.

Изображение Т,s- диаграммы для жидкой и паровой фаз воды с нанесением линий основных процессов и параметров будет дано после подробного изучения термодинамических свойств жидкой и паровой фаз воды.